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Response functions in phase-ordering kinetics
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We discuss the behavior of response functions in phase-ordering kinetics within the perturbation theory
approach developed earlier. At zeroth order the results agree with previous gaussian theory calculations. At
second order the nonequilibrium exponentandA i are changed but remain equal.
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. INTRODUCTION a=0, f(x)~(x—1)"Y2 and \g=1. The solution of the
problem in the largen limit [8] gives the exponent

The scaling properties of response functions for phase-

ordering systems has been the subject of some rddént a=(d—2)/2, ()
interest. We study these properties here using the . )

$-expansion method developed previouysyto extend per-  the scaling function

turbation theory beyond the Gaussian level. We find, while i

there are no corrections generated at second-order for the F(x)~ X ©)
exponent a governing the response function, there are (x—1)42’

second-order corrections for the nonequilibrium expongnts

and\g and\ =\g. We also find the associated scaling func- and\ ;=d/2. Berthier, Barrat, and Kurchd®] have carried

tion at second order in perturbation theory. out a Gaussian auxiliary function approximation calculation
If (r,t) is the scalar ordering field whose dynamics arefor this problem. This has been extended to treat one dimen-

driven by a time dependent Ginzburg-LandaGL) model  sjon in Ref.[10] with the results

(described in detail belowthen we can study the correlation

function a=(d—1)/2 @

Cri—ra,ty,tp) =(h(ry,t) ¥(ra, ). (D) andf(x) is again given by Eq(6). Henkel, Pleimling, Go-

This quantity has been studied in a growth kinetics contexﬂsfhhoed sarr‘livl_eugi;r:\r/] eg?g;}nu;lntﬂ ecgggcl)irnmaflu:]n(;?g:lance
[3] for a variety of systems and shows the scaling behavior ' 9

C(r,ty,ty)=F(r/L(ty),t1/t,), whereL(t,) is the character-
istic growth law L (t;)~t'? and the growth exponent iz

=2 for the nonconserved order parameters studied in this
paper. Focus has been on the on-site correlation function
C(0t;,t,)=F(0t;/t,). Fort;>t, we haveF(0x)~x "% This is the same form as E(p) if \g/z=d/4.

Xa+lf>\R/z
f(x)~ x—1)@ D" ®

where\ is the well studied4,5] nonequilibrium index.
We can also introduce an external fi@{1) conjugateto
the order parameter and define the response function

8((1)
L

evaluated at zero field. For the local &r,) response func-
tion it has become customary to writg>t,,

)

B=0

X(0ty,t2) =t; T VE(ty /1), (3
where for largex=t, /t,,
f(x)~x"MR'Z, (4)

The goal in the analysis is to find the exponemtndi i and

the scaling functionf(x). Here we focus on the regime

Numerical work[12] has focussed on smoothed integrals
of the fundamental response functig(t,,t,). This smooth-
ing procedure helps with numerical sampling but can lead to
qualitative differences between the fundamental response
function and its smoothed counterparts for lower dimensions.

We focus here on the computation of the local response
x(t1,t2)=x(0t;,t,) to second order in théd expansion de-
veloped in Ref[2] for a scalar order parameter. At zeroth
order we find

Xolty o) =t 1 oty /1), 9

with the exponent a given by E¢7) and

\/7 x4
=N TR [amx— 1)1

(10

where botht; andt, are large enough for the system to be in where the constari, is defined in Sec. IV below.

the scaling regime.

At second order in perturbation theory we again find the

Let us review some of the results found previously. Thescaling form given by Eq(3) with a=3(d— 1) but the scal-
exact resul{6,7] for the one-dimensional Ising model gives ing function is given now by
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TABLE I. Second-order values for the exponents Ay and the
parameteio from Ref.[2]).

Dimension N=A\R )
1 0.6263 . . . 0.46Q . ..
2 1.108... 0.6877 . ..
3 15824 . .. 0.9067 . . .
d
Large d/2 e _
5(\2-1)

\/T x@~ 112
f(X)Z 7TA0 (47T)d/2(X— 1)d/2—v

X[1+Aq(x)+ 0?29 1g(x)], (11

wherew is determined by Eq(14), v is given by Eq.(166),
Aq4(x) is given by Eqs(140) and(136), andg(x) is given by
Egs. (157 and(163. In the largex limit, where A 4(x) and

E(x) go to a constant, we can use Hdl) to identify the
nonequilibrium exponent

Ag=d+1-20—2v. (12)

Let us use the same self-consistent procedures for evalu-

ating\g as used in | foh andw. We found in I, at this same
order, that

d 2%y

A=5tw 3d/2+1° (13
with @ given as the solution to

2ot 022 Kbt | g, 9 14
wto ot a1~ 1T o (14
" Jld 29271 1 T%dR) 15

= Z [

" Jo [142¢ 2 T(d)

andKy is given by Eq.(164). Solving for o from Eq. (14)
and inserting this into Eq.13) gives the values ok shown
in Table I. Notice, however, that if we eliminakg; from Eq.
(14) using Eq.(166) for v and eliminateM 4 in Eq. (14) in
favor of A —d/2 using Eq.(13), we obtain

20+2v+(N—d/2)=1+d/2. (16)
This can be rewritten as
A=1+d—2w—2v. 17
Comparing with Eq(12) and we find
A=\gr (18)
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In the following section we describe the setting up of the
perturbation theory used to obtain these results.

II. INTRODUCTION OF ORDERING AUXILIARY FIELD

Consider a system where the ordering kinetics are driven
by the simplest nonlinear TDGL model. Assuming that we
guench a system from a disordered high temperature state to
zero temperature, where the thermal noise is set to zero, we
have the equation of motion

Iy

—r =TI=V/ () +cV2y+BI+ 8(ta~to) o,

(19
whereV () is the driving potential. Typically this is chosen
for simplicity to be of they* type: V= 1(1—?)2. We have
also included an external fieBi(r,t), conjugate to the order

parameter, in the equation of motion. Choosing units of time
and space such that=c=1 we can write

AD)P(1)==V'[(1)]+B(1)+ o(ty—to)¢ho, (20)
where the diffusion operator
A1) = — 2
(1= EPRE (21)

is introduced along with the shorthand notation that 1 de-
notes €4,tq).

We show, extending the analysis in | to include an exter-
nal field, that the order parametércan be divided into an
ordering component and an equilibrating component

Y=o m]+u[m], (22

whereo[m] is the solution to the Euler-Lagrange equation

dmz—ﬂ'z— [o{m]],

connecting the degenerate stages + ¢y, V' (= ¢9)=0. In
this equatiomm is taken to be the coordinate. In the case of a
* potential we have the solution

1
o[m]=tanh —=m|.
o % 72 )
It is shown in Ref[2] that the equilibrating fieldi decays
exponentially to zero at long times. The scaling properties of
the theory are carried by the ordering fielfim].

It was shown in | that the theory is self-consistent if the
auxiliary field saisfies an equation of motion of the form

(25

(23)

(24)

A(1)m(1)=E(1)+B(1)+ &(t;—to)mo(ry),

whereE is a function ofm which must scale as-1/L(t) in
the scaling regime and self-consistently generates ordering.

and, as was found at lowest order, the nonequilibrium expom particular,= must be such thaim?(1))~L>2(t). In I and
nents are equal. These cancellations, coming from two verjjere we study the nonlinear model where

independent calculations of and A, serve as a severe

check on the validity of the algebra carried out in each.

E(1)=&ty)a(m(1)) (26)
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and, if scaling is to hold, we find self-consistently that 5
&(t1)~1/L(t;) and is independent of the fietd. 5M—(1)AT(m,M) =0, (33
h
Ill. FIELD THEORY FOR AUXILIARY FIELD S
Let us consider the field theory associated with the equa- om(1) h

tion of motion form(r,t) given by Eqgs.(25) and(26). Our

development will follow the standard Martin-Siggia-Rose Where the subscrigt indicates that the average includes the
(MSR) [13] method in its functional integral form as devel- source fieldsh andH. Taking the derivative in Eq33) we
oped by DeDominicis and Pelifil4]. In the MSR method obtain

the field theoretical development requires a doubling of op-

erators to include the fiel¥l which is conjugate tan. We i[A(1)<m(1)>h_Ql(l)]:_f d2 To(12(M(2))y
give here an overview of the development in | needed here to

treat the response function including the coupling to an ex- +H(1)—iB(1) (35)
ternal field. ’

Following standard procedures, described in more detaiyhere the nonlinearities are included in
in 1, averages of interest are given as functional integrals
over the fieldsm, M and weighted by the probability distri- Q1(1)=&(1)(a(1))n, (36)

bution P[m,M]: Eq. (34) gives

<f(m,M>>=fDmDMP[m,M]f(m,M), 27) —i[R(1(M(1))+Qy(1)]=h(1),
where
P[m,M]=e TmM/z(H h),
and 7\(1)=%+Vi
Z(h,H)= f DMDM AT M) (29 &M
Q1(1)=€&(1)(o1(m(1))M(1)). (37

The action takes the form ]
Clearly we can go on and generate equations for all of the

cumulants by taking functional derivatives of E¢85) and
AT(m,M):A(m,M)Jrf difh(1)m(1)+H(1)M(1)], (36). Let us introduce the notation thaBa a, .. a
(299  (12---n) is the nth order cumulant for the set of fields
{A1,A,, ... A}, where fieldA; has argumen{l), field A,

where has argumen{2), et.This notation is needed when we mix
cumulants withm and M. As an example
A(m,M)=—if dIM(D[A(1)M(1) = £(1)a(1)—B(1)] (M),
. Cummnd 1238 = Sy sh2yon3) OO
B Ef dlf d2M(1)To(12M(2), (30 As a shorthand for cumulants involving oniy fields we
write
with
5{1—1
o(12)= 8(t; —tg) 8(t; —t2)g(r;—ry). (3D Gnl12- )= G sh(n—1)- - oh(2) (m(L)n-

(39
In these equations we use the notatifd]l= [dt;d%,, and

assume that the initial fielany(r) is Gaussian and has a |N€ equations governing theth order cumulants are given
b

variance given by y
(Mo(r)Mo(r2)) =g(r1=r2). (32 AL Gy .n(12:-1) +Qe(12:--M)] =0 (40)
We can generate correlation functions as functional deriva‘:jlnd
fcives in_terms of sourcels andH which couple to the con- i[A(1)Gp(12---n)—Qy(12---n)]
jugate fields.
The fundamental equations of motion are given by the

identities == f d1lTo(1)Gym. .m(12-0).  (4D)
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The Q’s are defined by We have shown that theth order cumulants are of order
1 (n/2)—1 in an expansion parameter we will develop. Ex-

O.(12 - -n)= 6 A1), (42 panding®(k,h,1) in powers of the cumulants with2 and

: sh(n)sh(n—1)---sh(2) <" keeping terms up to the four-point cumulant, we obtain

ot 1 o 4
Qn(12-- 'n)zah(n)ﬁh(n—l)- oh(2) Q(1). (43 Ph(x,)=|1~- 563(111)@+ 564(111])Q+ e
With this notation the equations determining the two- X P{9(x,1), (53
point functions can be written as
_ R where
—iI[A(1)Gum(12) +Q(12)]= 6(12), (44) dk

o PE(x,1)= f 5ok e (54

i[A(l)Gz(12)—Q2(12)]=—J d1l15(11)Gum(12).
(45 and

This is all formally exact. In order to develop perturbation Dy(k,h,1)= eikG1(1)g— (1/2k?G,(11). (55)

theory the next step is to show thag(1) andQ,(1) can be _ o _ _
expressed in terms of the singlet probability distribution ~ Then, after taking the derivative with respectt@), setting
the external fields to zero, and neglecting all cumulants with

Pn(x,1)={8(x—m(1)))p,. (46)  n)2, we obtain
One finds Dy(k,h=0,1)=e V2K*SA1) (56)
Qu1)= f dXE(1) 7 (X)Pr(x,1), (47 @nd
Q(12)
« 1)
Q1(1)=f dx§(1)o(x) <M(1)>h+m Ph(x,1). :f dxg(l)a(X)J %e—ikxisz(lz)e—(llz)kZSz(l)’
(48) 21

Then any perturbation theory expansion 'IBH(X,].) will where we have defined in zero external field
lead immediately to an expansion fQr (1) andQ(1). We S,(1)=G,(11)=(m?(1)). (57)

can then obtair®,, andQ, by functional differentiation.
The development of a perturbation theory expansion foln the scaling regime, wher8,(1) is very large, we can

Pn(x,1) begins by using the integral representation fordhe replaces(x)— osgn(x) in the integral and obtain
function:

dk QP(12)= £(1) $oG(12) f dxsgrx)
Ph(X,1)=JEe P (k,h,1), (49)

where X J %ike—ikxe—(I/Z)kzsz(l)
®d(k,h,1)= (kM) (50)

d(I) 1
T dx o(x,1)

=¢£(1) ¢0G2(12)f dxsgr(x)
The average of the exponential is precisely of the form which

can be rewritten in terms of cumulants: In this case we integrate by parts in the integral avend
use @d/dx)sgnx)=24(x) to obtain

(ik)®
®(k,h,1)= —G4(11---1) |, 51
(kh.1) ex"LEl s G- (3D QP(12) = £(1) $0Ga(12)2¢(0,D)
where G¢(11---1) is the sorder cumulant for the field = E( 1) hGa(12 / 2 58
Consider first the lowest-order contribution @, which A
does not vanish with the external fieldsH: Turning t0Q,(12) we note that it is given by taking the

5 derivative of Eq.(48) with respect toh(2). In the scaling
_ regime where the characteristic lendtfit) is large we can
Q2(12) f dxg(1) o (x) oh(2) Ph(x.1). (52 replaceo(x)— #y28(x). Then we need only consider
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. where
Qz(12)=§(1)t//oJ dx26(x) GMm(12)+<M(1)>h5h(2) S, (1)=G,(1L - 1) 64
stt)= gLl - 1).
+ 6h(+;—|(1) Pn(x,1) Let us define the set of vertices

dk_ §
A key observation is that as we analyze contributions to Vp(l):f dxsgr(x)f zlkzmle P (k,h=0,1),

Q, or Qn we will find that each term consists of products of (65)
correlation functions and response functions with legs tied
together by factors defined by which can be written, after following the same set of steps in

reducing the original expression fér,, as

dk .
1 Edes X f—ikz‘”le*"‘xfb k,1 dk
$p(1) g | o o(k:1) vp(l)zzf E|<2r’oI>(|<,h=o,1), (66)
dk

IZJ 2—k2pef(1’2)k232(1) which is independent of position. Then the quan@ty(12),

o . . . . . .
which appears in the equation of motion f85(12), is given

P in the form
= —Zm $o(1), (59 - 1y

where we have used an integration by parts in going from the Qa(12)= %g(l)E 0 (2s+1)! V(1) Gasya(11---12),

first to the second line and defined as (67)

dk _waes,) 2 where we have used the definition¥af 1) given by Eq(65)
¢>0(1)=2f >-€ S2h= 75,(1)" (60) in the last step.
It should be clear that the verticej(1) are at leasD(s)

Each term in the perturbation theory (z.txpansion(@(;,‘ror(AQn mbtheq)d) Exﬁfrés'on' By bdlr_ect expansion db(k,h=0,1)
will be proportional to factors off,. The perturbation ex- aboutdo(k,h=0,1) we obtain

pansion is ordered by the sum of the labelsn ¢,. Thus a ( ) 56( )

contribution with insertionsp,¢,¢4, each factor typically Vo(1)=pg(1)+ ——pg1 2(1) — ———pg, 3(1) + - -
associated with different times, ©(4). We refer to this 69)
expansion as theé expansionlt should be emphasized that

at this stage this is gormal expansion. At orden it is true |t was found self-consistently in | thdtth order cumulants,
that p,~L~?P*1, which is small, however it will be mul-  such asS,(1), areO(¢/2—1). The terms in the expansion
tiplied, depending on the quantity expanded, by positive facfor ), given by Eq.(68), are O(s), O(s+3), and O(s
tors of L(t) such that each term in the expansiondip has  +5), respectively.

the same overall leading power with respect (@). Let us turn next t&),(12). It was shown in |, in the same
To see how this expansion works let us consider first thgyt of zero applied field, that the nonlinear contribution to
two-point quantityQ,(12), defined by the equation of motion fo6G,,,, can be written as
Qu12)= [ dx ehosorin i 6D -D° o
? 0599 5n(2) Q:(12)=£(1) %2 V()GED) | (11 112).

(2s)!

Using Egs.(49) and (51) and taking the derivatives with (69)

respect th(2), it wasshown in |, in the case of zero exter-  Before going on to discuss the perturbation theory calcu-
nal fields, that lation of the physical response function let us made sure the
theory is sensible at zeroth order where, from E§3) and

dk .
Q2(12) = Yio£(1) f dxsgr(x) f 5_e aikh=0y  (©9
QP(12)= (1) o po(1)Ga(12) = wo(1)G,(12), (70)

L (ik)2ste
X2 s)+1>I Gzsval1l---12). 02 P12~ 1) hodo( 1) Gum(12)= 00(1) Gpun(12),
f?é?(;:s v?g (r)lglsllecumulants vanish in the case of zero externa\\llvhere for a scaling solution "
= (—1)%k2S wo(1)=§&(1) hocpo(1) (72)
@(k,hzo,l)zex;{gl (2s)! 325(1)} €3 must fall off as 1, for larget;.
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IV. GAUSSIAN THEORY

Inserting Eqs.(70) and (71) into Egs.(44) and (45 we
obtain the equations for the response function

—i[A(1)+wo(1)I1GH(12) = 8(12) (73)
and the correlation function
IAMD - oo(DI6(12) =~ | dTTTTGR(T2)
(74)
It is not difficult to show that

i[A(1)~ wo(1)]G(12) = 5(12). (79

Using this last result we have that the correlation function

can be written as

612~ [ di [ d2iGEADICHDIT),
(76)
wherell(12) is given by Eq(31).

The first step in the construction of the solution to these

equations is to Fourier transform E{5) over space:

at,

+02— wo(ty) IGQU A, tatr) = 8t — ).  (77)

This first-order differential equation has the solution

. ty
'Gggkn(qvtltz): a(tl_tz)exl{ Jt dr] —g?+ wo(7)]
2

= 0t~ o) R(ty, tp)e” 1t (78)
and we have defined
t
R(tl,tz):eXF{J’ dTwo( T) . (79)
ta
Taking the inverse Fourier transform we obtain
- eI/t~ tp)
GO (r tit,) = 6(t;—t)R(ty,ty) ———— .
mM( 1 2) ( 1 2) ( 1,42 [47T(t1—t2)]d/2
(80)

Let us turn our attention to the correlation function: Tak-

PHYSICAL REVIEW E69, 016114 (2004

tions and still be able to carry out the analysis analytically if
we introduce the initial condition

9(q)=gee~W2@O* (82)

or

e—(llz)(r/e)2

_QOW- (83

g(r)

Inserting this form into Eq(81) and doing the wave number
integration we obtain

GP(r,tt,)

Jo

Y0 (2P +4T)]
[2m(€%+4T)]%2 '

=R(ty,to)R(t5,t0)

(84)

Let us turn now to the quantitR(t,,t,) defined by Eq.
(79). We assume thab, has the form given by

w

= Lt (85

wo(1)
wheret. is a parametefor function oft which goes to a
valuet, for large time$ such that the correlations af has a

smooth early time behaviow is a constant we will deter-
mine. Evaluating the integral

ftld B tld ol ti+t. 86
; Two(T)= ; th+7_—w n Gt (86)
we obtain
i+t @
R(tl’tZ)_(—tz-l—tc (87

Inserting this result back into E¢B4) leads to the expression
for the correlation function

If we are to have a self-consistent scaling equation then the
autocorrelation functionr(=0), at large equal timeg =t,
=t, given by

—r2/8T

w

ty+1te
to+te

ty+te
to+te

e

(8’7TT)d/2 ’
(88)

G&”(r,tltz):g(m(

ing the Fourier transform and inserting the results for the

propagators andll, we obtain

GR(q,t1t) = 6(t;—to) B(t,—to)R(ty, to)
X R(ty,to)e 29°Tg(q), (81)

whereg(q) is the Fourier transform of the initial correlation
function andT=(t;+t,)/2—ty. While we are primarily in-

o

(O)(t):twadIZ ,
= (to+1c)2® (8m) %2

(89

must have the formB8{)(t)=Aqt. Comparing we see the
exponentw must be given by

|

1
0=z

2

:
1+

5 (90

terested in the long-time scaling properties of our system, we
can retain some control over the influence of initial condi-and the amplitude by
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1 9 The perturbation theory expansion B (x,1) was dis-
0 (91)  cussed in Sec. lll. Using Eq&49) and(51) we have

Ap=
Y (tot 1o (8m)YF

—ik
The general expression for the correlation function can be ~ X(1.2= 5H(2)J dX"(X)f s—e okh,1)
rewritten in the convenient form

dk
GOr )= VSt SOt D tyt) e~ WA/ +4T), :'f dx“(x)f 37° ekl
(92 ©
(ik)®
where xgl —~ Gsm(1L--12). (99
V(ti+te) (tr+te) 2 We can then set the source fields to zero and obtain
Do(tity)= T Tttt (93 B

(—1)°
1,2= G 11.--12),
The nonequilibrium exponent is defined in the long-time X( IE 0 (2s+1)! Va(D)Gasi1ml )

limit by (100
POt (VL)' o have the exploit expansion for (e physical response func-
VSo(t1)So(ts) Tttt tion to the lowest two orders:
:SIT we obtain the Ohta-Jasnow-KawaseBJK) [15,3] re- X(1y2)=i¢>o(1)GmM(12)+id)l(l)(;—!l)GmmmN(lllZ)
d RIS (101
A=~ (95)

2 The leading term says that the physical response contains a

term proportional to the MSR response functiGp,y(12).
Looking at equal times we have that
B. Zeroth order
G(zo)(f,tt) g (96 At zeroth order we have the response function

fo(X)=
° SOt Xo(1,2=1do(1)GO,(12). (102

where the scaled length is defined k¥ r/4t. fo(x) is just  ¢o(1) is given by Eq.(60) andinﬁ,{,,(lZ) is given by Eq.
the well known OJK result for the scaled auxiliary correla- (80). Putting these together we obtain
tion function. The connection to the physical order parameter

2t
correlation function is discussed in I. We will not need these 2 gl
results here. XO(l’z):—oa(tl_tZ)R(tl'tZ) NP
V27SP(1) [4m(t—t5)]
(103
V. NONLINEAR RESPONSE
If we focus on the on-site response function
A. General expansion
We are interested in the nonlinear response function Xo(t1,t2) = xo(011,t2)
) 2 6(t;—to)
_ e~ (a4 L A ¥
x(12)= 5B(Z)<‘7(1)>h,8=0 V27s9(1)
=i{o(1L)M(2 _ ty+t 1
i{a(1)M(2))ng=0 17 —. (109
) tatte) [4m(ty—ty)]
=i——=(o(1 —0s 9 .
SH(2) (o(1)ns=0 ©7 If we assumet;>t, and writeS{”)(1)=A.t, we have
where the second line follows from Eg&7) and (30). We (ty.ty) = [ 2 [ty+t, 1
have now set8(1)=0 and we can express the response 1t2 At \totte) [4m(ty—ty)]92
function in terms of a functional derivative of the singlet (105
probability distribution function just as in the computation of
Q,: It is conventional to write this in the scaling form
Xolty,t2) =ty 7 *f (%), (106
12=i——| d Ph(x,1). 98 . .
x(1.9=i 5H(2)f X0 (X)Pn(x,1) (%8) wherex=t,/t,. Clearly we can identify ¥+a=1/2+d/2 or
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-1
a= T (107)

and the scaling function is given by

\/T wal/2
)=\ 7A, [4m(x—1)]92"

and, using Eq(90) for w, we find in the largex limit the
form given by Eq.(4), with

(108)

Ag=d+1—2w=d/2=\. (109

C. Second order

At second order we have two contributions. The second-

order contribution td3,,,,, can be read off from Eq165) in
| with the result

xP(12)=i4,(1)GZ,(12), (110
where
G2(12)= f d1d2G%,(11)2@(12)G(Q,(22)
(111

and the associated self-energy is given by

3012 =3[~ i01(1)]GRU12[GL(1D ] —iw1(2)].
(112
w1 is given by
wo(1)
= 113
21(D= o) (113
The second contribution at second order is given by
(2) ) (0)
(12)=i¢1(1) 7~ CnmnmM 1112. (114

We therefore need the lowest order
G
various four-point cumulants were worked out in

GO (1112) is given by Eq(155) in I,

Gyl 1112 [ dT36QATIGPADT

X[ ~iwy(1)]GN(12). (115
This second-order contribution is given then by
— (1) 1
(2)(12)= GO
X (12)—f dlyy, )(11)
’ 1) 2'¢
X[GP(11) 2w, (1)iGQ(12). (116

expression fo
mmmv 1112). The lowest order expressions for all of the

PHYSICAL REVIEW E69, 016114 (2004

In order to carry out the integrals contributing & it is
convenient to write

b..)\ 42
iGg?gA(lz):a(tl—tz)R(tl,tz)(z—ﬁ) e (122,
(117)

where we introduce the notation

1

P72

(118

and

dr2
a
G(zo)(lz)zR(tl,to)R(tz.to)go(z_:) e (22
(119

where

1
aj; ZW (120)
Let us first evaluate((z)(lz) which is somewhat simpler.
Inserting these forms for the correlation functions and re-
sponse functions into the integral fg?)(1,2) we obtain

)1
£(1,2=yyo ‘g 5 0(ti—to)R(t1, 1) R2(ty,t0) 95K (12),
(122
where
tp _
K(lz):ft dthZ(tlatO)wl(l)
b—d/Z a—d b d/2
x(z—: 2—1771 2—1;) J12 (122

,and the spatial integral is given by

I(12)= f drpe (12202 iTe- 0125, (123

The spatial integral can be evaluated by completing the
square in the Gaussian with the result

d2

J12)=| =2 e (bma(brrt 221D)/2a0)r T,

Qg

(124

where
apg= blT+ bT2+ 2a1T.

(125

Let us focus on the on-site correlation functiarf 4= 0)

016114-8



RESPONSE FUNCTIONS IN PHASE-ORDERING KINETICS

ty _
K(tltz):J’t dt;R%(ty,to) w4(1)
2

sz d/2 20 d/2
E) ( bi1+bn+ 2311)

3d/2
:(277) fdtR(tl!tO)wl(l)Wd/Z (126)

di2/ 4 —\ d
ay

o e
2

2

where
b 2_b,
118,7012
b7+ b+ 2a57

={8(ty+ t)[(t;—t2) (ty+ 1) +2(t—to) (1 t) 1} L

WO =

(127
We have from the zeroth-order theory
(1) =Agty (128
and
w
wy(1)= K’Ef (129

wherew is given at zeroth order by E¢90). We have then

1 3d/2~
K(titz)= At 8d’2(277> K(ty,ta), (130
where
~ t1dT—~
K(tlrtZ):J =(tW)?2, (131
t, t
W=_8W,. (132
Using the result
go=Aot5"(8m)%"2, (133

which follows from Eq.(91), and collecting coefficients, we
have

$o(DA)
sP(ty) 27

t2)R(ty, )7 K (1)

X211t = o

X 6(t,— (134

Looking at the time integral we change variables from
to t=yt; and introduces=t,/t; so that

PHYSICAL REVIEWER, 016114 (2004

~ idy
K(ty,tp)= L 7

+2ti(1-y)(y=9)]

dr2

Y (- 1+y)

1+y

=t; 9%(s), (135
where
_ 1 dy y d/2
K(S)—L M 1Ty) [(1-s)(1+y)
+2(1-y)(y—s)] %2 (136)

Then the second-order correction is given by

Xty ) = lﬂo¢o(1) t;—t)R(ty,t)t32 2 k(s)

d/2 (

=dodo(1) d,z0<t1—t2>R<tl,tz>t;"’2K<s>.
(137)

The zeroth-order contribution is given by

t2)] - d/2_
(138

Xo(t1,t2) = hodo(1) O(t;—t)R(ty,tp)[4ar(t;—

We can then combine the zeroth ag$f contributions to
find

X(t1,t2) = xo(t,t2) + x5 (t1,t) = xo(ty, t2)[ 1+ Ay(s)],
(139

where
Ag(s)=w2971(1—5)%k(s), (140
and «(s) is given by Eq.(136). Analytically one can show

A4(0)— w/2d asd—o andA4(s)— (w/2)(1—s) ass—1.
We turn next to the evaluation dB{?),. Inserting the

response and correlation functions and using the properties

of R(tq,t) we have
GEN(12)=—i Td,z 0(t;—t2)R(ty,t5)
K
9% — —
XJ dtl dtz (.01(1)(1)1(2)
t
X(bﬁbﬁbfz)dlzaﬁRz(t_l 1oR%(t2,t0)dmm
(141
where

016114-9
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After inserting this result fol back into Eq.(151), using
w=d/2+ 1, which is valid at this order, and letting = (t;

d qdo
JmM:j d°r,d r2e—(bllz)rize—(b2/2)r%2e—(b3/2)r§2
—t,)y; andt,=(t;—t,)y, we obtain

(2m)¢

o (@i2)r%

Dz (142 3t t)=;g(r) 158
Ve -]
where
where
b;=b,7, 143
1 11 ( ) g(T):fl+T %jyl% V1Yo )d/Z
by=bizt2as5, (144 r YiJs Y2 \Yatye
b;=b%, 14 1
3= D22 (149 ><[3 e 20—y (1595
D=b;b,+b,ybs+bsb,, (146) Y1i=Y2—2(y17 Y2
and and
-1 -1 —1\-1 t2 1
a=(by +b; +bz )" (147 = (156

ti—t, ti/t,—1

Again restricting ourselves to the on-site response function . . .
9 g P A more useful form forg(7) is obtained if we ley,=y;z to

1 obtain
(2) I _
Ghu(0ts1,t2) '(277)3,1,2 6t —t2)R(ty,tp) Lerdy, (1
g(n)= — | dzf(zyq), (157
t— [t _gﬁ - T Y1 Jay,
xf dt1J Yty > wi(1)wi(2)
t ty 2 where
(148 S2-1
— f(z,y))= . (158
X (byibiabz) Y2af;R¥ (11 to) U [(1+2)[(3-2) - 2y,(1-2)2]2
_ 1 This means that the MSR on-site response function can be
XR?(tp,t0)—>- (149 written up to second order
D
After grouping the various multiplicative terms, using Eq. Grm(Oity,t) = —i60(t;—t) R(ty,t2)
(133, gives [4m(t,—t)]¥?
02d-1 X[1+ w?29 g(7)]. (159

G2 (0ty,t))=—i6(t;—t)R(t1,tn) @2 ———=I(tq,15),
i PO e Pulling together all of the results for the physical response
(150 function we have up to second order

where x(t1, 1) =1, 172 (1, /1), (160

~ ty  (f. — .
3ty ty)= ft dt, fttldtzultz)z“’—z(W)d’Z, (157 Wit
2 2

a=3(d—1) (162
with
and
brzas, .
W= “libbyt 152 = X - [1+A4(5)+ 0?29 2g(7)]
1+ b2b3 +b2bl - 7TA0 [47T(X—1)]d/2 d( & g(T y
After some algebra we find (162
1 1 wherex=t, /t,. Itis not difficult to show that in the sma#
- = - _ limit
8(ty+1ty) [(t1—t) (3t —ty) —2(t;—ty)?] _
(153 g(7)=—Kgylnr+g(7), (163

016114-10
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where

1 S42-1
K"zjodz[<1+z><3—z>]d’2' e

PHYSICAL REVIEWER, 016114 (2004

sponse function. At lowest, Gaussian level, order we find
agreement with previous work. Going to the next order we
find that the scaling indea, defined by Eq(3), is unchanged
from its Gaussian level value @=(1/2)(d—1). The non-
equilibrium exponents. and A are found to be equal at

K4 also appeared in the analysis in I. If our perturbationlowest and second order in perturbation theory with explicit
theory results are to make sense we must exponentiate thealues given as a function af Expressions for the scaling

—Kgyln 7 contribution
l-vinr=7""=(x—-1)", (165
where in the last term we have used EtH6) and
v=w229"1K,. (166)

Putting this result back into Eq162) we obtain our final
result for the scaling function given by E€L1).

VI. CONCLUSIONS

function are also available.

It is not at all clear if there is a general proof that
=\gr. The validity of this result at second order in perturba-
tion theory is very suggestive. It will also be interesting to
see whether, within this perturbation theory, this result holds
for the casg16] of vector order parametersit1) where
the analysis is more involved.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-

We have used perturbation theory to explore the nature aflation under Contract No. DMR-0099324. | thank Professor
the scaling solutions for the local scalar order parameter reMarco Zannetti for useful discussions.

[1] A brief review is given later in this section.

[2] G.F. Mazenko, Phys. Rev. BB, 1543(1999. Referred to here
as |.

[3] A.J. Bray, Adv. Phys43, 357(1994).

[4] D.S. Fisher and D.A. Huse, Phys. Rev.3B, 373(1988.

[5] F. Liu and G.F. Mazenko, Phys. Rev.4, 9185(1991).

[6] E. Lippiello and M. Zannetti, Phys. Rev. &L, 3369(2000.

[7] C. Godreche and J.M. Luck, J. Phys38, 1151(2000.

[8] F. Corberi, E. Lippiello, and M. Zannetti, Phys. Rev.65,
046136(2002.

[9] L. Berthier, J.L. Barrat, and J. Kurchan, Eur. Phys. 118635
(1999.

[10] F. Corberi, E. Lippiello, and M. Zannetti, Eur. Phys. J2B
359(2001).

[11] M. Henkel, M. Pleimling, C. Godreche, and J.M. Luck, Phys.
Rev. Lett.87, 265701(2001).

[12] For a discussion see F. Corberi, E. Lippiello, and M. Zannetti,
e-print cond-mat/0307542.

[13] P.C. Martin, E.D. Siggia, and H.A. Rose, Phys. Re\8,A123
(1973.

[14] C. DeDominicis and L. Peliti, Phys. Rev. B3, 353(1978.

[15] T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. L4#.
1223(1982.

[16] G.F. Mazenko, Phys. Rev. &L, 1088(2000.

016114-11



