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Response functions in phase-ordering kinetics
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We discuss the behavior of response functions in phase-ordering kinetics within the perturbation theory
approach developed earlier. At zeroth order the results agree with previous gaussian theory calculations. At
second order the nonequilibrium exponentsl andlR are changed but remain equal.
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I. INTRODUCTION

The scaling properties of response functions for pha
ordering systems has been the subject of some recen@1#
interest. We study these properties here using
f-expansion method developed previously@2# to extend per-
turbation theory beyond the Gaussian level. We find, wh
there are no corrections generated at second-order for
exponent a governing the response function, there a
second-order corrections for the nonequilibrium exponentl
andlR andl5lR . We also find the associated scaling fun
tion at second order in perturbation theory.

If c(r ,t) is the scalar ordering field whose dynamics a
driven by a time dependent Ginzburg-Landau~TDGL! model
~described in detail below!, then we can study the correlatio
function

C~r12r2 ,t1 ,t2!5^c~r1 ,t1!c~r2 ,t2!&. ~1!

This quantity has been studied in a growth kinetics cont
@3# for a variety of systems and shows the scaling beha
C(r ,t1 ,t2)5F„r /L(t1),t1 /t2…, whereL(t1) is the character-
istic growth law L(t1)'t1/z and the growth exponent isz
52 for the nonconserved order parameters studied in
paper. Focus has been on the on-site correlation func
C(0,t1 ,t2)5F(0,t1 /t2). For t1@t2 we haveF(0,x)'x2l/z,
wherel is the well studied@4,5# nonequilibrium index.

We can also introduce an external fieldB(1) conjugateto
the order parameter and define the response function

x~12!5S d^c~1!&
dB~2! D

B50

~2!

evaluated at zero field. For the local (r15r2) response func-
tion it has become customary to write,t1.t2,

x~0,t1 ,t2!5t2
2(11a) f ~ t1 /t2!, ~3!

where for largex5t1 /t2,

f ~x!'x2lR /z. ~4!

The goal in the analysis is to find the exponentsa andlR and
the scaling functionf (x). Here we focus on the regim
where botht1 andt2 are large enough for the system to be
the scaling regime.

Let us review some of the results found previously. T
exact result@6,7# for the one-dimensional Ising model give
1063-651X/2004/69~1!/016114~11!/$22.50 69 0161
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a50, f (x);(x21)21/2, and lR51. The solution of the
problem in the largen limit @8# gives the exponent

a5~d22!/2, ~5!

the scaling function

f ~x!;
xd/4

~x21!d/2
, ~6!

andlR5d/2. Berthier, Barrat, and Kurchan@9# have carried
out a Gaussian auxiliary function approximation calculati
for this problem. This has been extended to treat one dim
sion in Ref.@10# with the results

a5~d21!/2 ~7!

and f (x) is again given by Eq.~6!. Henkel, Pleimling, Go-
dreche, and Luck in Ref.@11#, using conformal invariance
methods, have derived a form of the scaling function

f ~x!;
xa112lR /z

~x21!(a11)
. ~8!

This is the same form as Eq.~6! if lR /z5d/4.
Numerical work@12# has focussed on smoothed integra

of the fundamental response functionx(t1 ,t2). This smooth-
ing procedure helps with numerical sampling but can lead
qualitative differences between the fundamental respo
function and its smoothed counterparts for lower dimensio

We focus here on the computation of the local respo
x(t1 ,t2)5x(0,t1 ,t2) to second order in thef expansion de-
veloped in Ref.@2# for a scalar order parameter. At zero
order we find

x0~ t1 ,t2!5t2
212af 0~ t1 /t2!, ~9!

with the exponent a given by Eq.~7! and

f 0~x!5A 2

pA0

xd/4

@4p~x21!#d/2
, ~10!

where the constantA0 is defined in Sec. IV below.
At second order in perturbation theory we again find t

scaling form given by Eq.~3! with a5 1
2 (d21) but the scal-

ing function is given now by
©2004 The American Physical Society14-1
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f ~x!5A 2

pA0

xv21/2

~4p!d/2~x21!d/22v

3@11Dd~x!1v22d21ḡ~x!#, ~11!

wherev is determined by Eq.~14!, v is given by Eq.~166!,
Dd(x) is given by Eqs.~140! and~136!, andḡ(x) is given by
Eqs.~157! and ~163!. In the largex limit, where Dd(x) and
ḡ(x) go to a constant, we can use Eq.~11! to identify the
nonequilibrium exponent

lR5d1122v22v. ~12!

Let us use the same self-consistent procedures for ev
atinglR as used in I forl andv. We found in I, at this same
order, that

l5
d

2
1v2

2dMd

3d/211
, ~13!

with v given as the solution to

2v1v22dS Kd1
Md

3d/211D 511
d

2
, ~14!

Md5E
0

1

dz
zd/221

@11z#d
5

1

2

G2~d/2!

G~d!
. ~15!

andKd is given by Eq.~164!. Solving for v from Eq. ~14!
and inserting this into Eq.~13! gives the values ofl shown
in Table I. Notice, however, that if we eliminateKd from Eq.
~14! using Eq.~166! for v and eliminateMd in Eq. ~14! in
favor of l2d/2 using Eq.~13!, we obtain

2v12v1~l2d/2!511d/2. ~16!

This can be rewritten as

l511d22v22v. ~17!

Comparing with Eq.~12! and we find

l5lR ~18!

and, as was found at lowest order, the nonequilibrium ex
nents are equal. These cancellations, coming from two v
independent calculations ofl and lR , serve as a sever
check on the validity of the algebra carried out in each.

TABLE I. Second-order values for the exponentsl5lR and the
parameterv from Ref. @2#!.

Dimension l5lR v

1 0.6268 . . . 0.4601 . . .
2 1.1051 . . . 0.6877 . . .
3 1.5824 . . . 0.9067 . . .

Large d/2 d

2
(A221)
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In the following section we describe the setting up of t
perturbation theory used to obtain these results.

II. INTRODUCTION OF ORDERING AUXILIARY FIELD

Consider a system where the ordering kinetics are dri
by the simplest nonlinear TDGL model. Assuming that w
quench a system from a disordered high temperature sta
zero temperature, where the thermal noise is set to zero
have the equation of motion

]c

]t
5G@2V8~c!1c¹2c1B#1d~ t12t0!c0 , ~19!

whereV(c) is the driving potential. Typically this is chose
for simplicity to be of thec4 type:V5 1

4 (12c2)2. We have
also included an external fieldB(r ,t), conjugate to the orde
parameter, in the equation of motion. Choosing units of ti
and space such thatG5c51 we can write

L~1!c~1!52V8@c~1!#1B~1!1d~ t12t0!c0 , ~20!

where the diffusion operator

L~1!5
]

]t1
2¹1

2 ~21!

is introduced along with the shorthand notation that 1
notes (r1 ,t1).

We show, extending the analysis in I to include an ext
nal field, that the order parameterc can be divided into an
ordering components and an equilibrating componentu,

c5s@m#1u@m#, ~22!

wheres@m# is the solution to the Euler-Lagrange equatio

d2s

dm2
[s25V8†s@m#‡, ~23!

connecting the degenerate statesc56c0 , V8(6c0)50. In
this equationm is taken to be the coordinate. In the case o
c4 potential we have the solution

s@m#5tanhS 1

A2
mD . ~24!

It is shown in Ref.@2# that the equilibrating fieldu decays
exponentially to zero at long times. The scaling properties
the theory are carried by the ordering fields@m#.

It was shown in I that the theory is self-consistent if t
auxiliary field saisfies an equation of motion of the form

L~1!m~1!5J~1!1B~1!1d~ t12t0!m0~r1!, ~25!

whereJ is a function ofm which must scale as'1/L(t) in
the scaling regime and self-consistently generates order
In particular,J must be such that̂m2(1)&'L2(t1). In I and
here we study the nonlinear model where

J~1!5j~ t1!s„m~1!… ~26!
4-2
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and, if scaling is to hold, we find self-consistently th
j(t1)'1/L(t1) and is independent of the fieldm.

III. FIELD THEORY FOR AUXILIARY FIELD

Let us consider the field theory associated with the eq
tion of motion form(r ,t) given by Eqs.~25! and ~26!. Our
development will follow the standard Martin-Siggia-Ro
~MSR! @13# method in its functional integral form as deve
oped by DeDominicis and Peliti@14#. In the MSR method
the field theoretical development requires a doubling of
erators to include the fieldM which is conjugate tom. We
give here an overview of the development in I needed her
treat the response function including the coupling to an
ternal field.

Following standard procedures, described in more de
in I, averages of interest are given as functional integr
over the fieldsm, M and weighted by the probability distri
bution P@m,M #:

^ f ~m,M !&5E DmDM P@m,M # f ~m,M !, ~27!

P@m,M #5eAT(m,M )/Z~H,h!,

and

Z~h,H !5E DmDMeAT(m,M ). ~28!

The action takes the form

AT~m,M !5A~m,M !1E d1@h~1!m~1!1H~1!M ~1!#,

~29!

where

A~m,M !52 i E d1M ~1!@L~1!m~1!2j~1!s~1!2B~1!#

2
1

2E d1E d2M ~1!P0~12!M ~2!, ~30!

with

P0~12![d~ t12t0!d~ t12t2!g~r12r2!. ~31!

In these equations we use the notation,*d15*dt1ddr 1, and
assume that the initial fieldm0(r ) is Gaussian and has
variance given by

^m0~r1!m0~r2!&5g~r12r2!. ~32!

We can generate correlation functions as functional der
tives in terms of sourcesh andH which couple to the con-
jugate fields.

The fundamental equations of motion are given by
identities
01611
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K d

dM ~1!
AT~m,M !L

h

50, ~33!

K d

dm~1!
AT~m,M !L

h

50, ~34!

where the subscripth indicates that the average includes t
source fieldsh andH. Taking the derivative in Eq.~33! we
obtain

i @L~1!^m~1!&h2Q1~1!#52E d2 P0~12!^M ~2!&h

1H~1!2 iB~1!, ~35!

where the nonlinearities are included in

Q1~1!5j~1!^s~1!&h , ~36!

Eq. ~34! gives

2 i @L̃~1!^M ~1!&1Q̂1~1!#5h~1!,

where

L̃~1!5
]

]t1
1¹1

2

and

Q̂1~1!5j~1!^s1„m~1!…M ~1!&. ~37!

Clearly we can go on and generate equations for all of
cumulants by taking functional derivatives of Eqs.~35! and
~36!. Let us introduce the notation thatGA1 ,A2 , . . . ,An

(12•••n) is the nth order cumulant for the set of field
$A1 ,A2 , . . . ,An%, where fieldA1 has argument(1), field A2
has argument(2), et.This notation is needed when we m
cumulants withm andM. As an example

GMmmm~1234!5
d3^m~4!&h

dH~1!dh~2!dh~3!
. ~38!

As a shorthand for cumulants involving onlym fields we
write

Gn~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
^m~1!&h .

~39!

The equations governing thenth order cumulants are give
by

2 i @L̃~1!GMm•••m~12•••n!1Q̂n~12•••n!#50 ~40!

and

i @L~1!Gn~12•••n!2Qn~12•••n!#

52E d1̄P0~11̄!GMm•••m~ 1̄2•••n!. ~41!
4-3
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The Q8s are defined by

Q̂n~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
Q̂1~1!, ~42!

Qn~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
Q1~1!. ~43!

With this notation the equations determining the tw
point functions can be written as

2 i @L̃~1!GMm~12!1Q̂2~12!#5d~12!, ~44!

i @L~1!G2~12!2Q2~12!#52E d1̄P0~11̄!GMm~ 1̄2!.

~45!

This is all formally exact. In order to develop perturbatio
theory the next step is to show thatQ1(1) andQ̂1(1) can be
expressed in terms of the singlet probability distribution

Ph~x,1!5^d„x2m~1!…&h . ~46!

One finds

Q1~1!5E dxj~1!s~x!Ph~x,1!, ~47!

Q̂1~1!5E dxj~1!s1~x!F ^M ~1!&h1
d

dH~1!GPh~x,1!.

~48!

Then any perturbation theory expansion forPh(x,1) will
lead immediately to an expansion forQ̂1(1) andQ1(1). We
can then obtainQ̂n andQn by functional differentiation.

The development of a perturbation theory expansion
Ph(x,1) begins by using the integral representation for thd
function:

Ph~x,1!5E dk

2p
e2 ikxF~k,h,1!, ~49!

where

F~k,h,1!5^eikm(1)&h . ~50!

The average of the exponential is precisely of the form wh
can be rewritten in terms of cumulants:

F~k,h,1!5expF (
s51

`
~ ik !s

s!
Gs~11•••1!G , ~51!

where Gs(11•••1) is the s-order cumulant for the field
m(1).

Consider first the lowest-order contribution toQn which
does not vanish with the external fieldsh,H:

Q2~12!5E dxj~1!s~x!
d

dh~2!
Ph~x,1!. ~52!
01611
-

r

h

We have shown that thenth order cumulants are of orde
(n/2)21 in an expansion parameter we will develop. E
pandingF(k,h,1) in powers of the cumulants withn&2 and
keeping terms up to the four-point cumulant, we obtain

Ph~x,1!5F12
1

3!
G3~111!

d3

dx3
1

1

4!
G4~1111!

d4

dx4
1•••G

3Ph
(0)~x,1!, ~53!

where

Ph
(0)~x,1!5E dk

2p
F0~k,h,1!e2 ikx ~54!

and

F0~k,h,1!5eikG1(1)e2(1/2)k2G2(11). ~55!

Then, after taking the derivative with respect toh(2), setting
the external fields to zero, and neglecting all cumulants w
n&2, we obtain

F0~k,h50,1!5e2(1/2)k2S2(1) ~56!

and

Q2
(0)~12!

5E dxj~1!s~x!E dk

2p
e2 ikxikG2~12!e2(1/2)k2S2(1),

where we have defined in zero external field

S2~1![G2~11!5^m2~1!&. ~57!

In the scaling regime, whereS2(1) is very large, we can
replaces(x)→c0sgn(x) in the integral and obtain

Q2
(0)(12)5j~1!c0G2~12!E dx sgn~x!

3E dk

2p
ike2 ikxe2(1/2)k2S2(1)

5j~1!c0G2~12!E dxsgn~x!F2
d

dx
F0~x,1!G .

In this case we integrate by parts in the integral overx and
use (d/dx)sgn(x)52d(x) to obtain

Q2
(0)~12!5j~1!c0G2~12!2F0~0,1!

5j~1!c0G2~12!A 2

pS2~1!
. ~58!

Turning to Q̂2(12) we note that it is given by taking th
derivative of Eq.~48! with respect toh(2). In the scaling
regime where the characteristic lengthL(t) is large we can
replaces1(x)→c02d(x). Then we need only consider
4-4



t
of
ie

th

t

ac

th

r-

rn

in

n

e
to

cu-
the

RESPONSE FUNCTIONS IN PHASE-ORDERING KINETICS PHYSICAL REVIEW E69, 016114 ~2004!
Q̂2~12!5j~1!c0E dx2d~x!FGMm~12!1^M ~1!&h

d

dh~2!

1
d2

dh~2!dH~1!GPh~x,1!.

A key observation is that as we analyze contributions
Qn or Q̂n we will find that each term consists of products
correlation functions and response functions with legs t
together by factors defined by

fp~1![E dx sgn~x!E dk

2p
ik2p11e2 ikxF0~k,1!

52E dk

2p
k2pe2(1/2)k2S2(1)

5S 22
d

dS2~1! D
p

f0~1!, ~59!

where we have used an integration by parts in going from
first to the second line and defined as

f0~1!52E dk

2p
e2(1/2)k2S2(1)5A 2

pS2~1!
. ~60!

Each term in the perturbation theory expansion forQn or Q̂n
will be proportional to factors offp . The perturbation ex-
pansion is ordered by the sum of the labelsp on fp . Thus a
contribution with insertionsf1f2f1, each factor typically
associated with different times, isO(4). We refer to this
expansion as thef expansion. It should be emphasized tha
at this stage this is aformal expansion. At ordern it is true
that fp'L2(2p11), which is small, however it will be mul-
tiplied, depending on the quantity expanded, by positive f
tors of L(t) such that each term in the expansion infp has
the same overall leading power with respect toL(t).

To see how this expansion works let us consider first
two-point quantityQ2(12), defined by

Q2~12!5E dx j~1!c0sgn~x!
dPh~x,1!

dh~2!
. ~61!

Using Eqs.~49! and ~51! and taking the derivatives with
respect toh(2), it wasshown in I, in the case of zero exte
nal fields, that

Q2~12!5c0j~1!E dx sgn~x!E dk

2p
e2 ikxF~k,h50,1!

3(
s50

`
~ ik !2s11

~2s11!!
G2s12~11•••12!. ~62!

Since all odd cumulants vanish in the case of zero exte
fields we have

F~k,h50,1!5expF (
s51

`
~21!sk2s

~2s!!
S2s~1!G , ~63!
01611
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where

S2s~1!5G2s~11•••1!. ~64!

Let us define the set of vertices

Vp~1!5E dx sgn~x!E dk

2p
ik2p11e2 ikxF~k,h50,1!,

~65!

which can be written, after following the same set of steps
reducing the original expression forfp , as

Vp~1!52E dk

2p
k2pF~k,h50,1!, ~66!

which is independent of position. Then the quantityQ2(12),
which appears in the equation of motion forG2(12), is given
in the form

Q2~12!5c0j~1!(
s50

`
~21!s

~2s11!!
Vs~1!G2s12~11•••12!,

~67!

where we have used the definition ofVs(1) given by Eq.~65!
in the last step.

It should be clear that the verticesVs(1) are at leastO(s)
in the f expansion. By direct expansion ofF(k,h50,1)
aboutF0(k,h50,1) we obtain

Vs~1!5fs~1!1
S4~1!

4!
fs12~1!2

S6~1!

6!
fs13~1!1•••.

~68!

It was found self-consistently in I that,th order cumulants,
such asS,(1), areO(,/221). The terms in the expansio
for Vs , given by Eq.~68!, are O(s), O(s13), and O(s
15), respectively.

Let us turn next toQ̂2(12). It was shown in I, in the sam
limit of zero applied field, that the nonlinear contribution
the equation of motion forGmM can be written as

Q̂2~12!5j~1!c0(
s50

`
~21!s

~2s!!
Vs~1!Gmm•••mMm

(2s12) ~11•••112!.

~69!

Before going on to discuss the perturbation theory cal
lation of the physical response function let us made sure
theory is sensible at zeroth order where, from Eqs.~67! and
~69!,

Q2
(0)~12!5j~1!c0f0~1!G2~12![v0~1!G2~12!, ~70!

Q̂2
(0)~12!5j~1!c0f0~1!GMm~12![v0~1!GMm~12!,

~71!

where for a scaling solution

v0~1!5j~1!c0f0~1! ~72!

must fall off as 1/t1 for large t1.
4-5
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IV. GAUSSIAN THEORY

Inserting Eqs.~70! and ~71! into Eqs.~44! and ~45! we
obtain the equations for the response function

2 i @L̃~1!1v0~1!#GMm
(0) ~12!5d~12! ~73!

and the correlation function

i @L~1!2v0~1!#G2
(0)~12!52E d1̄P0~11̄!GMm

(0) ~ 1̄2!.

~74!

It is not difficult to show that

i @L~1!2v0~1!#GmM
(0) ~12!5d~12!. ~75!

Using this last result we have that the correlation funct
can be written as

G2
(0)~12!5E d1̄E d2̄iGmM

(0) ~11̄!iGmM
(0) ~22̄!P0~ 1̄2̄!,

~76!

whereP0(12) is given by Eq.~31!.
The first step in the construction of the solution to the

equations is to Fourier transform Eq.~75! over space:

F ]

]t1
1q22v0~ t1!G iGmM

(0) ~q,t1t2!5d~ t12t2!. ~77!

This first-order differential equation has the solution

iGmM
(0) ~q,t1t2!5u~ t12t2!expF E

t2

t1
dt@2q21v0~t!#G

5u~ t12t2!R~ t1 ,t2!e2q2(t12t2) ~78!

and we have defined

R~ t1 ,t2!5expF E
t2

t1
dtv0~t!G . ~79!

Taking the inverse Fourier transform we obtain

iGmM
(0) ~r ,t1t2!5u~ t12t2!R~ t1 ,t2!

e2r 2/4(t12t2)

@4p~ t12t2!#d/2
.

~80!

Let us turn our attention to the correlation function: Ta
ing the Fourier transform and inserting the results for
propagators andP0 we obtain

G2
(0)~q,t1t2!5u~ t12t0!u~ t22t0!R~ t1 ,t0!

3R~ t2 ,t0!e22q2Tg̃~q!, ~81!

whereg̃(q) is the Fourier transform of the initial correlatio
function andT5(t11t2)/22t0. While we are primarily in-
terested in the long-time scaling properties of our system,
can retain some control over the influence of initial con
01611
n

e

e

e
-

tions and still be able to carry out the analysis analytically
we introduce the initial condition

g̃~q!5g0e2(1/2)(q,)2
~82!

or

g~r !5g0

e2(1/2)(r /,)2

~2p,2!d/2
. ~83!

Inserting this form into Eq.~81! and doing the wave numbe
integration we obtain

G2
(0)~r ,t1t2!

5R~ t1 ,t0!R~ t2 ,t0!
g0

@2p~,214T!#d/2
e2(1/2)[r 2/(,214T)] .

~84!

Let us turn now to the quantityR(t1 ,t2) defined by Eq.
~79!. We assume thatv0 has the form given by

v0~1!5
v

t11tc
, ~85!

where tc is a parameter~or function of t which goes to a
valuetc for large times! such that the correlations ofm has a
smooth early time behavior.v is a constant we will deter-
mine. Evaluating the integral

E
t2

t1
dtv0~t!5E

t2

t1
dt

v

tc1t
5v lnS t11tc

t21tc
D , ~86!

we obtain

R~ t1 ,t2!5S t11tc

t21tc
D v

. ~87!

Inserting this result back into Eq.~84! leads to the expressio
for the correlation function

G2
(0)~r ,t1t2!5g~0!S t11tc

t01tc
D vS t21tc

t01tc
D v e2r 2/8T

~8pT!d/2
.

~88!

If we are to have a self-consistent scaling equation then
autocorrelation function (r 50), at large equal timest15t2
5t, given by

S2
(0)~ t !5t2v2d/2

1

~ t01tc!
2v

g0

~8p!d/2
, ~89!

must have the formS2
(0)(t)5A0t. Comparing we see the

exponentv must be given by

v5
1

2 S 11
d

2D ~90!

and the amplitude by
4-6
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A05
1

~ t01tc!
2v

g0

~8p!d/2
. ~91!

The general expression for the correlation function can
rewritten in the convenient form

G2
(0)~r ,t1t2!5AS2

(0)~ t1!S2
(0)~ t2!F0~ t1t2!e2(1/2)[r 2/(,214T)] ,

~92!

where

F0~ t1t2!5SA~ t11tc!~ t21tc!

T1tc1t0
D d/2

. ~93!

The nonequilibrium exponent is defined in the long-tim
limit by

G2
(0)~0,t1t2!

AS0~ t1!S0~ t2!
5SA~ t11tc!~ t21tc!

T1t01tc
D l

~94!

and we obtain the Ohta-Jasnow-Kawasaki~OJK! @15,3# re-
sult

l5
d

2
. ~95!

Looking at equal times we have that

f 0~x!5
G2

(0)~r ,tt !

S2
(0)~ t !

5e2x2/2, ~96!

where the scaled length is defined byx5r /4t. f 0(x) is just
the well known OJK result for the scaled auxiliary corre
tion function. The connection to the physical order parame
correlation function is discussed in I. We will not need the
results here.

V. NONLINEAR RESPONSE

A. General expansion

We are interested in the nonlinear response function

x~12!5
d

dB~2!
^s~1!&h,B50

5 i ^s~1!M ~2!&h,B50

5 i
d

dH~2!
^s~1!&h,B50 , ~97!

where the second line follows from Eqs.~27! and ~30!. We
have now setB(1)50 and we can express the respon
function in terms of a functional derivative of the singl
probability distribution function just as in the computation
Q2:

x~1,2!5 i
d

dH~2!
E dx s~x!Ph~x,1!. ~98!
01611
e

r
e

e

The perturbation theory expansion forPh(x,1) was dis-
cussed in Sec. III. Using Eqs.~49! and ~51! we have

x~1,2!5 i
d

dH~2!
E dx s~x!E dk

2p
e2 ikxF~k,h,1!

5 i E dxs~x!E dk

2p
e2 ikxF~k,h,1!

3(
s51

`
~ ik !s

s!
Gs,M~11•••12!. ~99!

We can then set the source fields to zero and obtain

x~1,2!5 i (
s50

`
~21!s

~2s11!!
Vs~1!G2s11,M~11•••12!,

~100!

where we introduce the same verticesVs as in Sec. III. We
have the explicit expansion for the physical response fu
tion to the lowest two orders:

x~1,2!5 if0~1!GmM~12!1 if1~1!
~21!

3!
GmmmM~1112!

1•••. ~101!

The leading term says that the physical response contai
term proportional to the MSR response functionGmM(12).

B. Zeroth order

At zeroth order we have the response function

x0~1,2!5 if0~1!GmM
(0) ~12!. ~102!

f0(1) is given by Eq.~60! and iGmM
(0) (12) is given by Eq.

~80!. Putting these together we obtain

x0~1,2!5
2

A2pS2
(0)~1!

u~ t12t2!R~ t1 ,t2!
e2r 2/4(t12t2)

@4p~ t12t2!#d/2
.

~103!

If we focus on the on-site response function

x0~ t1 ,t2!5x0~0,t1 ,t2!

5
2

A2pS2
(0)~1!

u~ t12t2!

3S t11tc

t21tc
D v 1

@4p~ t12t2!#d/2
. ~104!

If we assumet1.t2 and writeS2
(0)(1)5A0t, we have

x0~ t1 ,t2!5A 2

pA0t1
S t11tc

t21tc
D v 1

@4p~ t12t2!#d/2
.

~105!

It is conventional to write this in the scaling form

x0~ t1 ,t2!5t2
212af 0~x!, ~106!

wherex5t1 /t2. Clearly we can identify 11a51/21d/2 or
4-7
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a5
d21

2
~107!

and the scaling function is given by

f 0~x!5A 2

pA0

xv21/2

@4p~x21!#d/2
, ~108!

and, using Eq.~90! for v, we find in the largex limit the
form given by Eq.~4!, with

lR5d1122v5d/25l. ~109!

C. Second order

At second order we have two contributions. The seco
order contribution toGmM can be read off from Eq.~165! in
I with the result

x1
(2)~12!5 if1~1!GmM

(2) ~12!, ~110!

where

GmM
(2) ~12!5E d1̄d2̄GmM

(0) ~11̄!S (2)~ 1̄2̄!GmM
(0) ~ 2̄2!

~111!

and the associated self-energy is given by

S (2)~12!5 1
2 @2 iv1~1!#GmM

(0) ~12!@G2
(0)~12!#2@2 iv1~2!#.

~112!

v1 is given by

v1~1!5
v0~1!

S2
(0)~1!

. ~113!

The second contribution at second order is given by

x2
(2)~12!5 if1~1!

~21!

3!
GmmmM

(0) ~1112!. ~114!

We therefore need the lowest order expression
GmmmM

(0) (1112). The lowest order expressions for all of t
various four-point cumulants were worked out in
GmmmM

(0) (1112) is given by Eq.~155! in I,

GmmmM
(0) ~1112!5E d1̄3GmM

(0) ~11̄!@G2
(0)~11̄!#2

3@2 iv1~ 1̄!#GmM
(0) ~ 1̄2!. ~115!

This second-order contribution is given then by

x2
(2)~12!5E d1̄c0

f0~1!

S2
(0)~1!

1

2
iGmM

(0) ~11̄!

3@G2
(0)~11̄!#2v1~ 1̄!iGmM

(0) ~ 1̄2!. ~116!
01611
-

r

In order to carry out the integrals contributing tox (2) it is
convenient to write

iGmM
(0) ~12!5u~ t12t2!R~ t1 ,t2!S b12

2p D d/2

e2(b12/2)r 12
2

,

~117!

where we introduce the notation

bi j 5
1

2~ t i2t j !
~118!

and

G2
(0)~12!5R~ t1 ,t0!R~ t2 ,t0!g0S a12

2p D d/2

e2(a12/2)r 12
2

,

~119!

where

ai j 5
1

2~ t i1t j !
. ~120!

Let us first evaluatex2
(2)(12) which is somewhat simpler

Inserting these forms for the correlation functions and
sponse functions into the integral forx2

(2)(1,2) we obtain

x2
(2)~1,2!5c0

f0~1!

S2
(0)

1

2
u~ t12t2!R~ t1 ,t2!R2~ t1 ,t0!g0

2K~12!,

~121!

where

K~12!5E
t2

t1
d t̄1R2~ t̄ 1 ,t0!v1~ 1̄!

3S b11̄

2p D d/2S a11̄

2p D dS b1̄2

2p D d/2

J~12! ~122!

and the spatial integral is given by

J~12!5E ddr̄ 1e2([b11̄12a11̄]/2)r
11̄

2

e2(b1̄2/2)r
1̄2

2

. ~123!

The spatial integral can be evaluated by completing
square in the Gaussian with the result

J~12!5S 2p

a0
D d/2

e2([b1̄2(b11̄12a11̄)]/2a0)r 12
2

, ~124!

where

a05b11̄1b1̄212a11̄ . ~125!

Let us focus on the on-site correlation function (r 12
2 50)
4-8



rties

RESPONSE FUNCTIONS IN PHASE-ORDERING KINETICS PHYSICAL REVIEW E69, 016114 ~2004!
K~ t1t2!5E
t2

t1
d t̄1R2~ t̄ 1 ,t0!v1~ 1̄!

3S b11̄

2p D d/2S a11̄

2p D dS b1̄2

2p D d/2S 2p

b11̄1b1̄212a11̄
D d/2

5S 1

2p D 3d/2E
t2

t1
d t̄1R2~ t̄ 1 ,t0!v1~ 1̄!W0

d/2, ~126!

where

W05
b11̄a11̄

2
b1̄2

b11̄1b1̄212a11̄

5$8~ t11 t̄ 1!@~ t12t2!~ t11 t̄ 1!12~ t̄ 12t2!~ t1 t̄ 1!#%21.

~127!

We have from the zeroth-order theory

S2
(0)~1!5A0t1 ~128!

and

v1~1!5
v

A0t1
2

, ~129!

wherev is given at zeroth order by Eq.~90!. We have then

K~ t1t2!5
v

A0t1
2

1

8d/2 S 1

2p D 3d/2

K̃~ t1 ,t2!, ~130!

where

K̃~ t1 ,t2!5E
t2

t1d t̄

t̄
~ t̄ W̃!d/2, ~131!

W̃58W0 . ~132!

Using the result

g05A0t0
2v~8p!d/2, ~133!

which follows from Eq.~91!, and collecting coefficients, we
have

x2
(2)~ t1 ,t2!5c0

f0~1!A0

S2
(0)~ t1!

v

2pd/2

3u~ t12t2!R~ t1 ,t2!t1
2vK̃~ t1 ,t2!. ~134!

Looking at the time integral we change variables fromt̄

to t̄ 5yt1 and introduces5t2 /t1 so that
01611
K̃~ t1 ,t2!5E
s

1dy

y S y

11yD d/2

@ t1
2~12s!~11y!

12t1
2~12y!~y2s!#2d/2

5t1
2dk~s!, ~135!

where

k~s!5E
s

1 dy

y S y

11yD d/2

@~12s!~11y!

12~12y!~y2s!#2d/2. ~136!

Then the second-order correction is given by

x2
(2)~ t1 ,t2!5c0f0~1!

v

2pd/2
u~ t12t2!R~ t1 ,t2!t1

2v222dk~s!

5c0f0~1!
v

2pd/2
u~ t12t2!R~ t1 ,t2!t1

2d/2k~s!.

~137!

The zeroth-order contribution is given by

x0~ t1 ,t2!5c0f0~1!u~ t12t2!R~ t1 ,t2!@4p~ t12t2!#2d/2.
~138!

We can then combine the zeroth andx2
(2) contributions to

find

x̃~ t1 ,t2!5x0~ t1 ,t2!1x2
(2)~ t1 ,t2!5x0~ t1 ,t2!@11Dd~s!#,

~139!

where

Dd~s!5v2d21~12s!d/2k~s!, ~140!

and k(s) is given by Eq.~136!. Analytically one can show
Dd(0)→v/2d asd→` andDd(s)→(v/2)(12s) ass→1.

We turn next to the evaluation ofGmM
(2) . Inserting the

response and correlation functions and using the prope
of R(t1 ,t2) we have

GmM
(2) ~12!52 i

1

~2p!3d/2
u~ t12t2!R~ t1 ,t2!

3E
t2

t1
d t̄1E

t2

t̄ 1
d t̄2

g0
2

2
v1~ 1̄!v1~ 2̄!

3~b11̄b1̄2̄b2̄2!d/2a1̄2̄
d

R2~ t̄ 1 ,t0!R2~ t̄ 2 ,t0!JmM ,

~141!

where
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JmM5E ddr̄ 1ddr̄ 2

~2p!d
e2(b1/2)r

11̄

2

e2(b2/2)r
1̄2̄

2

e2(b3/2)r
2̄2

2

5
e2(a/2)r 11

2

D d/2
, ~142!

where

b15b11̄ , ~143!

b25b1̄2̄12a1̄2̄ , ~144!

b35b2̄2 , ~145!

D5b1b21b2b31b3b1 , ~146!

and

a5~b1
211b2

211b3
21!21. ~147!

Again restricting ourselves to the on-site response functi

GmM
(2) ~0,t1 ,t2!52 i

1

~2p!3d/2
u~ t12t2!R~ t1 ,t2!

3E
t2

t1
d t̄1E

t2

t̄ 1
d t̄2

g0
2

2
v1~ 1̄!v1~ 2̄!

~148!

3~b11̄b1̄2̄b2̄2!d/2a1̄2̄
d

R2~ t̄ 1 ,t0!

3R2~ t̄ 2 ,t0!
1

D d/2
. ~149!

After grouping the various multiplicative terms, using E
~133!, gives

GmM
(2) ~0,t1 ,t2!52 iu~ t12t2!R~ t1 ,t2!v2

22d21

~2p!d/2
Ĵ~ t1 ,t2!,

~150!

where

Ĵ~ t1 ,t2!5E
t2

t1
d t̄1E

t2

t̄ 1
d t̄2~ t̄ 1 t̄ 2!2v22~W!d/2, ~151!

with

W5
b1̄2̄a1̄2̄

2

11b2b3
211b2b1

21
. ~152!

After some algebra we find

W5
1

8~ t̄ 11 t̄ 2!

1

@~ t12t2!~3 t̄ 12 t̄ 2!22~ t̄ 12 t̄ 2!2#
.

~153!
01611
After inserting this result forW back into Eq.~151!, using
v5d/211, which is valid at this order, and lettingt̄ 15(t1

2t2)y1 and t̄ 25(t12t2)y2 we obtain

Ĵ~ t1 ,t2!5
1

@8~ t12t2!#d/2
g~t!, ~154!

where

g~t!5E
t

11t dy1

y1
E

t

y1dy2

y2
S y1y2

y11y2
D d/2

3
1

@3y12y222~y12y2!2#d/2
~155!

and

t5
t2

t12t2
5

1

t1 /t221
. ~156!

A more useful form forg(t) is obtained if we lety25y1z to
obtain

g~t!5E
t

11t dy1

y1
E

t/y1

1

dz f~z,y1!, ~157!

where

f ~z,y1!5
zd/221

@~11z!@~32z!22y1~12z!2#d/2
. ~158!

This means that the MSR on-site response function can
written up to second order

GmM~0,t1 ,t2!52 iu~ t12t2!
R~ t1 ,t2!

@4p~ t12t2!#d/2

3@11v22d21g~t!#. ~159!

Pulling together all of the results for the physical respon
function we have up to second order

x~ t1 ,t2!5t2
212af ~ t1 /t2!, ~160!

with

a5 1
2 ~d21! ~161!

and

f ~x!5A 2

pA0

xv21/2

@4p~x21!#d/2
@11Dd~s!1v22d21g~t!#,

~162!

wherex5t1 /t2. It is not difficult to show that in the smallt
limit

g~t!52Kdln t1ḡ~t!, ~163!
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where

Kd5E
0

1

dz
zd/221

@~11z!~32z!#d/2
. ~164!

Kd also appeared in the analysis in I. If our perturbati
theory results are to make sense we must exponentiate
2Kdln t contribution

12v ln t't2v5~x21!v, ~165!

where in the last term we have used Eq.~156! and

v5v22d21Kd . ~166!

Putting this result back into Eq.~162! we obtain our final
result for the scaling function given by Eq.~11!.

VI. CONCLUSIONS

We have used perturbation theory to explore the natur
the scaling solutions for the local scalar order parameter
01611
e

of
e-

sponse function. At lowest, Gaussian level, order we fi
agreement with previous work. Going to the next order
find that the scaling indexa, defined by Eq.~3!, is unchanged
from its Gaussian level value ofa5(1/2)(d21). The non-
equilibrium exponentsl and lR are found to be equal a
lowest and second order in perturbation theory with expl
values given as a function ofd. Expressions for the scaling
function are also available.

It is not at all clear if there is a general proof thatl
5lR . The validity of this result at second order in perturb
tion theory is very suggestive. It will also be interesting
see whether, within this perturbation theory, this result ho
for the case@16# of vector order parameters (n.1) where
the analysis is more involved.
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